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Abstract

This paper presents new results concerning the heuristic
optimization of cable routes in electrical panels. The prob-
lem is modeled and a heuristic solution, using an insertion
algorithm, is proposed, analyzed, and compared with pre-
vious results. Tests have shown that good results can be
obtained from a common layout found in the industry.

1 Introduction

In industrial facilities, like hydroelectric power plants,
automobile manufacturing plants, and other facilities
equipped with medium or large-sized industrial automation
systems, there are panels and cabinets using dozens or hun-
dreds of electrical components wired by thousands of ca-
bles, passing through hundreds of conduits arranged as a
graph. The arrangement of these cables has direct influence
over the cost of the installation and in the design quality.
The right definition of the routes used by the cables also
allows the definition of the quantity and type of the cables
used in the panel during the design time. The problem of
giving a path for each cable in the panel, connecting all the
associated components at a minimum cost and without over-
filling the space available in the conduits, will be called here
the cable routing problem in electrical panels. This prob-
lem differs from the problem of routing cables in raceways,

described in [3], due to the existence of entry points, as de-
scribed in Section 2.

The routing may be made by hand: empirically or aided
by measure systems (a ruler on a scaled drawing or a mea-
surement tool in a CAD application), the designer selects
the shortest path for every cable, starting from the most ex-
pensive and following to the cheaper ones. If the shortest
route between two components becomes overfilled, the de-
signer re-routes the cable through the shortest underfilled
route available. If a feasible route cannot be found, the de-
signer moves the already routed cables to another path. This
process follows iteratively until all cables are routed.

This is a stressing, repetitive, and error-prone process.
This paper analyzes the properties of cable laying in electri-
cal panels and suggest an computer solution that improves
the results obtained in [2] by adding the handling of open
conduits and partial saturation.

2 Modeling

A panel is composed of an arbitrary number of compo-
nents (contactors, overload relays, fuses, PLCs, etc.), each
one with an arbitrary number of connection terminals, in a
given physical position, and a set of conduits for wire dispo-
sition. Therefore, the model of a panel shows the connec-
tion terminals, the conduits and associations among them.
Mathematically, the panel, Pn can be represented by

Pn := (Lt, Lc, Li) , (1)



where Lt denotes the list of connection terminals, Lc de-
notes the list of conduits, and Li denotes the list of connec-
tions. The designer gives the physical position of the com-
ponents and terminals, according to design standards, and
the routing process is not allowed to change it. The layout
of a simplified panel is shown in Figure 1.

Figure 1. A typical panel

A connection In is a set of electrically equivalent termi-
nals that must be connected by cables and is represented by

In := (Lt, ei, se, cn) , (2)

where Lt denotes the list of connected terminals, ei rep-
resents the electrical properties of the cable used for this
connection (gauge, color, insulation voltage, maximum al-
lowed temperature, etc.), se is the external cross-section of
the cable, and c denotes the cost of the cable. The values
of ei are important regarding the electrical design, but are
not used in the routing process. A connection among three
terminals is represented in Figure 2.

Each connection gives origin to one or more cables,
needed to electrically connect the terminals. A cable w is
represented by

wn := (ti, tf , ei, se, c) , (3)

where ti and tf denote the starting and ending terminals,
respectively, ei represents the electrical properties of the ca-
ble, se its external cross-section, and c its cost.

Each cable from the same connection wires two termi-
nals, and no terminal may be connected to more than two
cables1. Therefore, qterm − 1 cables are needed to connect
qterm terminals.

The connection order of the terminals from a connection
list is particularly important because it allows some min-
imization on the distance traveled by the cables. From the
combinatorial analysis, it can be shown that there are qterm!
permutations for the list of terminals and that half of these
permutations are inversions of those already enumerated
ones. As permutations with inverted connection order of

1This is valid for terminals connected in a daisy chain. In other config-
urations, like those in distribution bars, more than two cables may exist.

the terminals are not electrically distinct, there are qterm!/2
ways to sort the terminals of each connection. This also
means that the number of available sequences increases ex-
ponentially with the number of connected terminals.

Figure 2. Connection among three terminals
of three distinct components

A terminal is represented by

Tn := (nc, nt, Pxyz) , (4)

where nc is the component, nt is the identification of the
terminal and Pxyz denotes the three-dimensional point with
coordinates (x, y, z) of the terminal within the panel space.

Conduits are line segments representing wire ducts, race-
ways and other materials used to hold cables in electrical
panels. A conduit is represented by

Cn := (sc, Axyz, Bxyz, t) , (5)

where sc denotes the cross-sectional area available for the
cables, including safety margins, Axyz and Bxyz respec-
tively denotes the starting and ending points of the conduit
in the panel space and t specifies the conduit type. For mod-
eling, there are two types of conduits: (i) open conduits, that
allows the crossing of cables through its walls, when this is
admissible by design, and (ii) closed conduits that does not
allow crossing. Figure 3 shows conduits of both types, re-
spectively denoted by dashed and full lines. The length of
a conduit is given by the Euclidean distance between the
points Axyz and Bxyz .

The first and the last jump of each cable may pass
through the walls of a open conduit if there is no closed con-
duit ending nearer to it. The points where the cable crosses
the conduit wall are called entry points (points P1 and P2 in
Figure 3) and makes this problem different of the problem
of routing cables in electric raceways. These jumps must
be considered in the calculation of the cable length and the
conduit saturation. The entry points can be determined by
solving the following problem: given a line segment AB
representing the conduit and a point C representing the ter-
minal, find the entry point D over AB for that the length of
the line segment CD is minimal. This step is executed for
each conduit, so, it will find the nearest entry point to the
terminal.

The conduit set may be represented as a weighted graph
with edges connecting nodes attributed arbitrarily, preserv-



ing the topology of the panel, as shown in Figure 3. Con-
duits have a limited available internal space, so the amount
of cables transiting through an edge is limited by the sum of
their cross section areas. A conduit is called overfilled if it
cannot hold more cables due to this limitation.

Figure 3. Graph from Fig. 1 and routed cable

A route is, by definition, a sequence of nodes and termi-
nals that gives the path followed by a cable from the starting
terminal to and the ending terminal td, i. e.,

rn := [to, n1, n2, . . . , nn, td] , (6)

where n are the nodes traveled by the cable. If the ca-
ble passes through open conduits, the entry points must be
listed too.

The length len(rn) of a route rn is given by the sum of
the lengths of the conduits traveled by the cable, including
any entry point, i.e.,

len(rn) :=
i=m−1∑

i=1

dist(ni, ni+1) (7)

where dist(ni, ni+1) is the Euclidean distance between a
ni and ni+1.

Formally, the cable routing problem is the problem of
finding a set of cables Lw = {w1, . . . , wm} and a set of
routes Lr for each connection in from the list of connec-
tions, so that the function

ctotal :=
j=n∑

j=1

cunit(ij)×
k=m∑

k=1

len(R(wk)) (8)

is globally minimal. Here cunit(ij) is the cost per unit of
length of the cable used for the connection ij , and R(w) is
the function that links a cable w to a route from the set of
all possible routes.

Given the set of conduits Lc of the panel and a set of
cables Lw passing through a conduit c ∈ Lc, the function
R(w) must satisfy the constraint

∑
sect(w) ≤ sc∀w ∈ Lw, c ∈ Lc , (9)

where sect(w) is the external cross section area of the cable
w and sc the cross section area available in the conduit c.

2.1 Simplification

The model described in Section 2 allows high-quality so-
lutions, but, its higher complexity inspires the search for a
simplified model that allows fast near-optimal computer so-
lutions. Therefore, the routing process was applied on a
defined list of cables, not on a list of connections. This
simplification cuts the computing complexity, but has the
drawback of excluding the search for better solutions by
changing the terminal wiring order. So, a cable will follow
the shortest route between two terminals unless this route
precludes, by conduit saturation, the existence of more eco-
nomic routes for other cables.

The given problem has some similarity to the classical,
NP-complete[4], knapsack problem: there are a bag of lim-
ited size (the set of conduits) and a set of objects (cables),
with distinct costs, that must be inserted optimally in the
available space. However, the cable routing problem has
one more degree of complexity: the cost of a cable changes
as the problem evolves since the conduits become saturated
when more and more cables are inserted.

2.2 Handling of Open Conduits

The presence of open conduits in panels raises some con-
siderations regarding to the partial saturation of a conduit,
that happens when some segment of a conduit becomes sat-
urated, but other segments of the same conduit still having
enough space for more cables. Figure 4 shows a example of
a partially saturated conduit.

Figure 4. Partial saturation of a conduit.

This problem was addressed by adding a process called
conduit splitting that transforms all open conduits in a set
of closed conduits delimited by the entry-points of the ca-
bles crossing it. This process may generate too many short
edges, increasing the complexity of the graph and the solv-
ing time, but without much improvements in the results. So,
a new heuristic was added to limit the conduit length to a
minimal: instead of splitting the conduit exactly over the
entry-point, that is done at regular user-defined intervals. It
also allows the user to select how much effort will be ap-
plied to the optimization of that routes.



3 The Routing Algorithm

The proposed algorithm (see Algorithm 1) runs in two
steps: First, it performs the conduit splitting, using the
heuristic presented in Section 2.2 to convert all open con-
duits into closed ones. In the second step, it iterates through
the list of cables, inserting them cables into the panel in de-
scending order of cost, routing them through the shortest
path, and decrementing the available space according to the
cross-section area of the cable (this last process is called
graph shrinking).

The cost minimization comes from the sorting. By in-
serting first the most expensive cables, the algorithm tries
to avoid the saturation, giving them the shortest routes. The
cheaper cables are routed later, getting increasingly worst
routes due to conduit saturation.

The algorithm works with permutations to satisfy the sat-
uration of cables in a specific conduit. This process is sim-
ilar to the backtracking process available in languages as
Prolog [5]. If, due to route saturation, a cable cannot be in-
serted, the current solution is discarded, the list of cables is
permuted and the process begins again. If no permutation
yields success, the problem is said to be non-feasible.

According to the insertion heuristics, it is expected that a
solution may be found without the need of too many permu-
tations. A solution may be considered optimal if no cable
was shifted from its shortest paths due to conduit saturation.

3.1 Implementation

The Algorithm 1 was implemented in the Lua program-
ming language. Data files with information about the panel
geometry and the wiring list are loaded using the language’s
own parser, ran through a validation routine, and used to
build the adjacency matrix used by the variant of Dijkstra’s
algorithm and tables of nodes, terminals and positions. Lua
coroutines are used to generate permutations for the list of
cables. An OpenGL viewer was also built to ease the vali-
dation of the models.

The implementation of the Dijkstra’s Algorithm used to
find the shortest path between nodes differs from the stan-
dard algorithm by considering only conduits with enough
space for the cables. Therefore, only the adjacency matrix
is needed for each instance, lowering the need for process-
ing. In order to allow the search on non-directed graphs,
as the graph of conduits, the adjacency matrix keeps two
references for each conduit.

4 Tests and Results

A case-study was performed comparing the solution gen-
erated by the implementation described in Section 3.1 with
one solution given by a human expert. The results of the

human-solved instance and the panel model used for this
comparison were taken from [2]. It is the project2 of a
PLC remote panel with 57 segments of conduit and 692
wires and cables connecting 1096 distinct terminals. This
panel was chosen because there is a multitude of alterna-
tive routes and a high concentration of wires in the area
near to the PLC, allowing to test the main characteristics
of the algorithm. The data was originally generated from
the wiring list used for the panel assembling and from a
three-dimensional model, made with a CAD application,
that gives the physical position of each terminal and con-
duit.

The test consisted of running the program with the
conduit splitting parameter set for: no splitting, 300mm,
200mm, 100mm, 50mm and 10mm. In all the tests, all
cables were routed through the panel in the first iteration
of the algorithm. These tests were performed in a Core 2
Duo 1.8GHz computer with 2GiB of RAM running Linux
and the LuaJIT 1.1.3 just-in-time compiler. Since the im-
plementation is not parallelized, it takes no advantage from
multi-core CPUs. To minimize timing errors, the program
was run five times for each setting and the times presented
are the average of these runs, measured with the Unix time
command, and includes the time needed to start the inter-
preter, compile Lua code into machine code and load the
data files.

Table 1 shows the number of nodes and conduits after the
graph splitting and the corresponding running times. Ta-
ble 2 shows the amount of cables calculated for each test
and the amounts bought, at time of panel assembly, with as-
sistance of the human expert using his professional knowl-
edge, but without any formal procedure. Costs are given in
Brazilian Reais.

This test shown that in all instances of shielded cable,
the most expensive one, got good routes, causing substan-
tial savings. The amount of the cheaper 0.75mm2 dark blue
cable given by the algorithm was higher than the amount
given by the expert. Also, it must be noted that the expert
rounded up the amounts that could not be safely calculated
(the 4.0mm2 green/yellow cable is a extreme case). The
focus of the algorithm on the cost minimization may be in-
ferred from the global cost decrease. The test also shows
that lowering the minimum conduit length leads to more
precise solutions, but also increases the running times ex-
ponentially.

5 Concluding Remarks and Future Work

The proposed algorithm gave excellent results when
solving an instance of the problem that features the most

2Project number 035815E/05, October of 2005, courtesy of WEG Au-
tomação S.A.



Algorithm 1 Cable routing
Given the lists of cables Lw, terminals Lt, conduits Lc, nodes Ln, and a minimum conduit length lmin;

For each open conduit c ∈ Lc with length(c) > lmin, do:

Create a set of closed conduits L′c so length(c′) ≤ lmin∀c′ ∈ L′c and the concatenation of [L′c1 . . . L′cn
] = c and

inserts it in Lc;

Remove c from Lc;

Sort Lw, in descending order, according to the cable cost per length unit;

While no valid solution is found, do:

For each cable w ∈ Lw, do:

Find the starting and ending nodes, for that dist(wstart, nstart) and dist(wend, nend) are minimal;
Use Dijkstra’s to find the shortest path rw between nodes nstart and nend of Lc, considering only the

conduits with enough internal space for the w;
Update the available space in the conduits of Lc according to rw;
Find the route cost croute = cunit × (dist(wstart, nend) + len(rw) + dist(wstart, nend))

Find the total cost from the current solution;

End the program if a feasible solution was found; Otherwise, permute Lw;

Table 1. Running times
Splitting Conduits Nodes Running time

No splitting 57 46 0.54s
300mm 77 66 1.01s
200mm 94 83 1.51s
100mm 159 148 4.69s
50mm 299 288 17.88s
10mm 1348 1337 432.52s

common routing requirements and when the space avail-
able in the conduits was not tightly restricted. In term of
cost, the heuristic for handling open conduits raised bet-
ter results than the ones obtained in [2] and it also allowed
the selection of the desired precision level by setting the
minimum conduit length. As expected, the running times
increases exponentially according to the selected precision
level, but these times are not prohibitively high under the
circumstances commonly found in the industry (e.g. panels
up to 300 conduit segments).

A direct comparison between the approach proposed in
this paper and the solution using Genetic Algorithms pre-
sented in [3] is limited because that problem features no
entry points or open conduits. However, comparisons using
panels without open conduits still possible and should be
performed. The current state of the research also asks for
comparisons with other optimization techniques.

Currently, the authors focus on gathering data for more
case studies and new algorithms using graph-domain con-
straint logic programming (CLP) for generate the cable lists
from the connection list, that will allow the implementation
of the complete model described in Section 2. This new

CLP domain was first introduced in [1] and an ECLiPSe
implementation developed by [6] was used to trace paths in
metabolic networks. Since the cable routing problem have
some similarities with this problem, these new approaches
are expected to give good results and, therefore, asking for
more research.
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