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Abstract In this paper, we present new results concerning the heuristic optimiza-
tion of cable routing in electrical panels. The problem is modeled and a heuristic
solution, using an insertion algorithm and a modified version of the Dijkstra’s al-
gorithm, is proposed, analyzed, and compared with human-made solutions. Tests
have shown that good results can be obtained from layouts commonly found in the
industry.
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1. Introduction

In industrial facilities, like hydroelectric power plants, automobile manufacturing plants,
and other facilities equipped with medium or large-sized industrial automation systems,
there are panels and cabinets using dozens or hundreds of electrical components like con-
tactors, relays, frequency inverters and PLCs. In major installations, these components
are wired by thousands of cables, passing through hundreds of conduits arranged as a
graph. The arrangement of these cables has direct influence over the cost of the instal-
lation and in the design quality. The optimal definition of the routes used by the cables
also allows the definition of the quantity and type of the cables used in the panel during
the design time.

The problem of giving a path for each cable in the panel, connecting all the asso-
ciated components at a minimum cost and without overfilling the space available in the
conduits, will be called here the cable routing problem in electrical panels. This is a real
NP-complete problem from the industry, with a large scope, since many other subprob-
lems are embedded in it.
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The routing can be done manaully: empirically or aided by measure systems (a ruler
on a scaled drawing or a measurement tool in a CAD application), the designer selects the
shortest path for every cable, starting from the most expensive and going to the cheaper
ones. If the shortest route between two components becomes overfilled, the designer re-
routes the cable through the shortest underfilled route available. If a feasible route cannot
be found, the designer moves the already routed cables to another path. This process
follows iteratively until all cables are routed.

This is a stressing, repetitive, and error-prone process. This paper analyzes the prop-
erties of cable laying in electrical panels and suggest a computer solution that near-
optimal solutions for a simplified version of the problem.

2. Modeling

A panel is composed of an arbitrary number of components (contactors, overload re-
lays, fuses, PLCs, etc.), each one with an arbitrary number of connection terminals, in a
given physical position, and a set of conduits for wire disposition. Therefore, the model
of a panel shows the connection terminals, the conduits and associations among them.
Mathematically, the panel, Pn can be represented by

Pn := (Lt, Lc, Li) , (1)

where Lt denotes the list of connection terminals, Lc denotes the list of conduits, and Li

denotes the list of connections. The designer gives the physical position of the compo-
nents and terminals, according to design standards, and the routing process is not allowed
to change it. The layout of a simplified panel is shown in Figure 1.

Figure 1. A typical panel

A connection In is a set of electrically equivalent terminals that must be connected
by cables and is represented by

In := (Lt, ei, se, cn) , (2)

where Lt denotes the list of connected terminals, ei represents the electrical properties
of the cable used for this connection (gauge, color, insulation voltage, maximum allowed



temperature, etc.), se is the external cross-section of the cable, and c denotes the cost of
the cable. The values of ei are important regarding the electrical design, but are not used
in the routing process. A connection among three terminals is represented in Figure 2.

Each connection gives origin to one or more cables, needed to electrically connect
the terminals. A cable w is represented by

wn := (ti, tf , ei, se, c) , (3)

where ti and tf denote the starting and ending terminals, respectively, ei represents the
electrical properties of the cable, se its external cross-section, and c its cost.

Each cable from the same connection wires two terminals, and no terminal may be
connected to more than two cables4. Therefore, qterm − 1 cables are needed to connect
qterm terminals.

The connection order of the terminals from a connection list is particularly impor-
tant because it allows some minimization on the distance traveled by the cables. From the
combinatorial analysis, it can be shown that there are qterm! permutations for the list of
terminals and that half of these permutations are inversions of those already enumerated
ones. As permutations with inverted connection order of the terminals are not electri-
cally distinct, there are qterm!/2 ways to sort the terminals of each connection. This also
means that the number of available sequences increases exponentially with the number
of connected terminals.

Figure 2. Connection among three terminals of three distinct components

A terminal is represented by

Tn := (nc, nt, Pxyz) , (4)

where nc is the component name (eg. KA1, KA2, and KA3 from Figure 2), nt is the
identification of the connected terminal (eg. A1 and A2), and Pxyz denotes the three-
dimensional point with coordinates (x, y, z) of the terminal within the panel space.

Conduits are line segments representing wire ducts, raceways, cable trays, and other
materials used to hold cables in electrical panels. A conduit is represented by

Cn := (sc, Axyz, Bxyz, t) , (5)

where sc denotes the cross-sectional area available for the cables, including safety mar-
gins, Axyz and Bxyz respectively denotes the starting and ending points of the conduit
in the panel space and t specifies the conduit type. The length of a conduit is given by
the Euclidean distance between the points Axyz and Bxyz . For modeling, there are two
types of conduits:

4This is valid for terminals connected in a daisy chain. In other configurations, like those in distribution bars,
more than two cables may exist.



Open conduits. Conduits that allows the crossing of cables through its walls, as open-
slot wire ducts and some types of raceways. An example of this type of conduit
is given with dashed lines in Figure 3. Open-type conduits may also be used to
model “virtual conduits”, as harnesses bound with cable ties.

Closed conduits. Conduits that does not allow crossing, as solid-slot wire ducts, internal
raceways and liquid tight conduits. An example of this type of conduit is given
with full lines in Figure 3.

The first and the last jump of each cable may pass through the walls of an open con-
duit if there is no ending nearer to it. The points where the cable crosses the conduit wall
are called entry points (points P1 and P2 in Figure 3). These jumps must be considered
in the calculation of the cable length and the conduit saturation. The entry points can be
determined by solving the following problem: given a line segment AB representing the
conduit and a point C representing the terminal, find the entry point D over AB for that
the length of the line segment CD is minimal. This step is executed for each conduit,
so, it will find the nearest entry point to the terminal. Strategies to deal successfully with
these entry points are described in Section 5.

The conduit set may be represented as a weighted graph with edges connecting
nodes attributed arbitrarily, preserving the topology of the panel, as shown in Figure
3. Conduits have a limited available internal space, so the amount of cables transiting
through an edge is limited by the sum of their cross section areas. A conduit is called
overfilled if it cannot hold more cables due to this limitation.

Figure 3. Conduit graph of the panel from Figure 1 and routed cable

A route is, by definition, a sequence of nodes and terminals that gives the path fol-
lowed by a cable from the starting terminal to and the ending terminal td, i. e.,

rn := [to, n1, n2, . . . , nn, td] , (6)

where n are the nodes traveled by the cable. If the cable passes through open conduits,
the entry points must be listed too.

The length len(rn) of a route rn is given by the sum of the lengths of the conduits
traveled by the cable, including any entry point, i.e.,

len(rn) :=
i=m−1∑

i=1

dist(ni, ni+1) (7)



where dist(ni, ni+1) is the Euclidean distance between a ni and ni+1.
Formally, the cable routing problem is the problem of finding a set of cables Lw =

{w1, . . . , wm} and a set of routes Lr for each connection in from the list of connections,
so that the function

ctotal :=
j=n∑

j=1

cunit(ij)×
k=m∑

k=1

len(R(wk)) (8)

is globally minimal. Here cunit(ij) is the cost per unit of length of the cable used for the
connection ij , and R(w) is the function that links a cable w to a route from the set of all
possible routes.

Given the set of conduits Lc of the panel and a set of cables Lw passing through a
conduit c ∈ Lc, the function R(w) must satisfy the constraint

∑
sect(w) ≤ sc∀w ∈ Lw, c ∈ Lc , (9)

where sect(w) is the external cross section area of the cable w and sc the cross section
area available in the conduit c.

3. Computational Complexity

The cable routing problem in electrical panels can be divided as a three-level optimiza-
tion problem, since three major steps are needed for finding the optimal solution: (a)
Given the connections among some terminals, generate a set of cables connecting them;
(b) Route these cables through the shortest paths without violating the constraints in the
conduits; (c) Sort these routes for minimal cost.

Routing one cable through the shortest path of a non-constrained graph is trivial and
done in polynomial time with the Dijkstra algorithm. But this approach only finds the
shortest path between two terminals and does not minimize the path of a set of cables
needed to connect three or more terminals. Adding this requirement unfolds the problem
into a combinatory optimization problem.

Adding the cost and constraints on conduit usage gives to the problem some simi-
larity to the classical, NP-complete[1], knapsack problem: there are a bag of limited size
(the set of conduits) and a set of objects (cables), with distinct costs, that must be in-
serted optimally in the available space. However, the cable routing problem has one more
degree of complexity, since the cost of a cable changes as the problem evolves and the
conduits become saturated.

4. Previous Work

No work featuring exactly the same requirements as the problem described in Section 2
was found in the literature, but several problems with similar requirements were found.

Kloske and Smith [2] presented a solution to a cable routing and optimization prob-
lem using genetic algorithms. The problem described features cost minimization, race-
way overfill, cable weight, and voltage drop. Unlike the cable routing problem in elec-
trical panels, the problem presented does not have neither open conduits nor connections



with more than two terminals. Ma et al [3] proposed a two-level genetic algorithm with
two-level chromosome coding for a cable route optimization problem, combining route
search and route combination into a hierarchical genetic algorithm.

The cable routing problem stated in Section 2 has several similarities with the prob-
lem of finding pathways in biochemical metabolic networks [4,5]. Dooms et al [6] in-
troduced the graph-domain constraint programming (CP) and used this strategy to find
that pathways. Viegas e Azevedo [7] repeated these results using constraint logic pro-
gramming (CLP) with a new declarative, ECLiPSe-based, framework called GRASPER.
These similarities and results suggest that graph-domain constraint logic programming
may also be used to solve the cable routing problem in electrical panels.

5. Handling of Open Conduits and Partial Saturation

The presence of open conduits in panels raises some considerations regarding to the
partial saturation of a conduit, that happens when some segment of a conduit becomes
saturated, but other segments of the same conduit still having enough space for more
cables. Figure 4 shows an example of a partially saturated conduit.

Figure 4. Partial saturation of a conduit.

This problem may be addressed by adding a process called conduit splitting that
transforms all open conduits in a set of closed conduits delimited by the entry-points
of the cables crossing it. Several strategies may be devised for the conduit splitting, but
three of them have practical significance:

a. Nearest entry point. The conduits are splitted exactly over the entry point, as shown
in Figure 5a. This strategy is simple and gives the more precise results regarding to
cable lengths, but may generate too many short edges, increasing the complexity
of the graph and the solving time, without much improvements in the results.

b. Nearest entry point with approximations. This strategy avoids creating short edges
by finding the entry point and searching for conduits ending nearer than a user-
specified threshold distance td from that entry point. If there is such conduit, no
splitting is performed and the cable enters the conduit by the existing ending, as
shown in Figure 5b. This strategy gives good precision, but is slower than the
former, since it also requires a search for conduit endings.

c. Constant length splitting. This strategy splits the conduits in a regular distance sd, as
show in Figure 5c. It is a fast strategy, since it does not need searches for existing
edges nor nearest point calculations, but it may create useless conduit segments,
i.e. conduit segments that will never be used because there is no near terminal.



Strategies b and c also allow the user to select the threshold distances and, therefore,
control how much effort will be applied to the optimization of the routes. Threshold and
splitting distances may also be heuristically selected according to the size of panel and
properties of the circuit (i.e. shorter distances for small, heavily wired panels and longer
distances for larger and sparsely wired ones).

Figure 5. Three strategies for conduit splitting: (a) nearest entry point, (b) nearest entry point with approxi-
mations, and (c) constant length splitting.

6. Simplification

The model described in Section 2 allows high-quality solutions, but, its higher complex-
ity inspires the search for a simplified model that allows fast near-optimal computer solu-
tions. Therefore, the routing process was applied on a defined list of cables, not on a list
of connections. This simplification cuts the computing complexity, but has the drawback
of excluding the search for better solutions by changing the terminal wiring order. So, a
cable will follow the shortest route between two terminals unless this route precludes, by
conduit saturation, the existence of more economic routes for other cables.

7. Algorithm

The proposed algorithm (see Algorithm 1) runs in two steps: First, it performs the conduit
splitting, using the “constant length splitting” strategy presented in Section 5 to convert
all open conduits into closed ones. In the second step, it iterates through the list of cables,
inserting them cables into the panel in descending order of cost, routing them through the
shortest path, and decrementing the available space according to the cross-section area
of the cable (this last process is called graph shrinking).

The cost minimization comes from the sorting, by inserting first the most expensive
cables and giving them the shortest routes. The cheaper cables are routed later, getting
increasingly worst routes due to conduit saturation.

The algorithm works with permutations to satisfy the saturation of cables in a spe-
cific conduit. This process is similar to the backtracking process available in languages as
Prolog [8,9]. If, due to route saturation, a cable cannot be inserted, the current solution is



discarded, the list of cables is permuted and the process begins again. If no permutation
yields success, the problem is said to be non-feasible.

Algorithm 1 Cable routing
Given the lists of cables Lw, terminals Lt, conduits Lc, nodes Ln, and a minimum conduit

length lmin;
For each open conduit c ∈ Lc with length(c) > lmin, do:

Create a set of closed conduits L′c so length(c′) ≤ lmin∀c′ ∈ L′c and the
concatenation of [L′c1 . . . L′cn

] = c and inserts it in Lc;
Remove c from Lc;

Sort Lw, in descending order, according to the cable cost per length unit;
While no valid solution is found, do:

For each cable w ∈ Lw, do:
Find the starting and ending nodes in the graph, for that

dist(wstart, nstart) and dist(wend, nend) are minimal;
Find the set L′c containing the conduits of Lc with enough internal

space for the cable w;
Find the shortest path rw between nodes nstart and nend of L′c;
Update the available space in the conduits of Lw according to rw;
Find the route cost croute = cunit × (dist(wstart, nend) +

len(rw) + dist(wstart, nend))

Find the total cost from the current solution;
End the program if a feasible solution was found; Otherwise, permute Lw;

According to the insertion heuristics, it is expected that a solution can be found
without the need of too many permutations. A solution is considered optimal if no cable
was shifted from its shortest paths due to conduit saturation.

8. Implementation

The Algorithm 1 was implemented in the Lua programming language [10,11]. In this
implementation, data files with information on the panel geometry and the wiring list are
loaded by the application using the language’s own parser, run through a validation rou-
tine, and used to build the adjacency matrix used by the variant of Dijkstra’s Algorithm
and tables of nodes, terminals and positions. Lua coroutines are used to generate permu-
tations for the list of cables. An OpenGL viewer was also built to ease the validation of
the models.

The implementation of the Dijkstra’s Algorithm [12] used to find the shortest path
between nodes differs from the standard algorithm by considering only conduits with
enough space for the cables. Therefore, only the adjacency matrix is needed for each
instance, lowering the need for processing. In order to allow the search on non-directed
graphs, as the graph of conduits, the adjacency matrix keeps two references for each
conduit.



8.1. Tests and Results

A case-study was performed comparing the solution generated by the implementation
described in 8 with a solution given by a human expert, at the time of panel assembly,
using his professional knowledge but without any formal procedure. It is the project5 of
a PLC remote panel with 57 segments of conduit and 692 wires and cables connecting
1096 distinct terminals.

The Figure 6 shows the physical layout of the components. This panel was chosen
because there is a multitude of alternative routes and a high concentration of wires in the
area near to the PLC, allowing to test the main characteristics of the algorithm. The data
was originally generated from the wiring list used for the panel assembling and from a
three-dimensional model, made with a CAD application, that gives the physical position
of each terminal and conduit.

Figure 6. Panel from the case study (Source: WEG Automação S.A.)

The test consists of running the program with the conduit splitting parameter set for:
no splitting, 300mm, 200mm, 100mm, 50mm and 10mm. In all the tests, all cables are
routed through the panel in the first iteration of the algorithm. These tests were performed
in a Core 2 Duo 1.8GHz computer with 2GiB of RAM running Linux and the LuaJIT
1.1.3 just-in-time compiler. To minimize timing errors, the program was run five times
for each setting and the times presented are the average of these runs, measured with the
Unix time command, and includes the time needed to start the interpreter, compile Lua
code into machine code and load the data files.

Table 1 shows the number of nodes and conduits after the graph splitting and the
corresponding running times. Table 2 shows the amount of cables calculated for each test
and the amounts bought, at time of panel assembly, with assistance of the human expert

5Project number 035815E/05, October of 2005, courtesy of WEG Automação S.A.



using his professional knowledge, but without any formal procedure. Costs are given in
Brazilian Reais.

This test shows that in all instances of shielded cable, the most expensive one, got
good routes, causing substantial savings. The amount of the cheaper 0.75mm2 dark blue
cable given by the algorithm was higher than the amount given by the expert. Also, it
must be noted that the expert rounded up the amounts that could not be safely calculated
(the 4.0mm2 green/yellow cable is an extreme case). The focus of the algorithm on the
cost minimization may be inferred from the global cost decrease. The test also shows that
lowering the minimum conduit length leads to more precise solutions, but also increases
the running times exponentially.

Table 1. Running times

Splitting Conduits Nodes Running time
No splitting 57 46 0.54s

300mm 77 66 1.01s
200mm 94 83 1.51s
100mm 159 148 4.69s
50mm 299 288 17.88s
10mm 1348 1337 432.52s

9. Concluding Remarks and Future Work

The proposed algorithm gives good results when solving an instance of the problem that
features the most common routing requirements, when the space available in the conduits
is not tightly restricted. Solutions using the strategy for handling open conduits give more
precise results than those using only closed conduits and it also allows the selection of the
desired precision level by setting the minimum conduit length. As expected, the running
times increases exponentially according to the selected precision level.

Future work involves a comparison between this approach with that one using Ge-
netic Algorithms. It is worth mentioning that a comparison with [2] and [3] is not appro-
priate here, since in these papers the problems have no entry points. Another interesting
development would be the application of graph-domain constraint logic programming in
the generation of cable lists from the connection list. This would allow the implementa-
tion of the complete model described in Section 2.
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